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Abstract: We construct a family of warped AdS5 compactifications of IIB supergravity

that are the holographic duals of the complete set of N = 1∗ fixed points of a Z2 quiver

gauge theory. This family interpolates between the T 1,1 compactification with no three-

form flux and the Z2 orbifold of the Pilch-Warner geometry which contains three-form

flux. This family of solutions is constructed by making the most general Ansatz allowed by

the symmetries of the field theory. We use Killing spinor methods because the symmetries

impose two simple projection conditions on the Killing spinors, and these greatly reduce the

problem. We see that generic interpolating solution has a nontrivial dilaton in the internal

five-manifold. We calculate the central charge of the gauge theories from the supergravity

backgrounds and find that it is 27
32 of the parent N = 2, quiver gauge theory. We believe

that the projection conditions that we derived here will be useful for a much larger class

of N = 1 holographic RG-flows.
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1. Introduction

Motivated by the AdS/CFT duality [1, 2], there has been considerable interest in find-

ing explicit supergravity solutions that correspond to conformal field theories with N=1

supersymmetry in four dimensions. In this paper we solve a long standing problem in

this context which was originally posed in [3]: We find the conjectured family of solutions

that correspond to infra-red fixed-points that interpolate between the solution of Pilch and

Warner [4], and the solution of Romans [5] that is the basis of what has become known as

the Klebanov-Witten (KW) point [6].

To be more precise, the Klebanov and Witten [6] argued that if one starts with the

N = 2, four-dimensional, Â1 quiver gauge theory and breaks it to an N = 1 supersymmetric

field theory by introducing a (unique) SO(4) invariant superpotential, the theory will flow

to an N = 1 superconformal fixed point in the infra-red and this fixed point is dual to the

solution of IIB supergravity on AdS5 × T 1,1 [5]. Similarly, it was argued in [7, 3] that the

same Â1 quiver gauge theory would, under a particular SO(3) invariant superpotential,

flow to another N = 1 superconformal fixed point whose supergravity dual is the (Z2

orbifold of) the Pilch-Warner (PW) solution [4] whose existence was first discovered via

five-dimensional supergravity [8].

More generally, it was argued in [3], using the non-perturbative methods of Leigh and

Strassler [9], that there is a family of four-dimensional N = 1 superconformal field theories
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(SCFT’s) that continuously interpolate between the KW flow and the PW flow, and that

this family preserves at least an SO(3) global symmetry. Indeed, [3] also investigated

the corresponding five-dimensional gauged supergravity solutions that were expected to

capture the relevant sectors of the IIB supergravity dual of the family of flows. From the

five-dimensional perspective, the existence of the family of flows and of the family of IR

fixed points was almost a triviality. There was, however, an important caveat: There are no

consistent truncation theorems for this more general class of five-dimensional supergravity

theories, and so the five-dimensional result were very suggestive, but did not prove that

there had to be corresponding ten-dimensional solutions. The search for this family of

solutions within IIB supergravity has been rather long and surprisingly difficult, and here

we will prove that family exists by reducing the problem to a system of ordinary differential

equations and exhibiting numerical solutions.

Much of the technology for finding supersymmetric solutions to supergravities in var-

ious dimensions relies on solving the supersymmetry variations and the Bianchi identities,

one can a postieri check that the field equations are satisfied. A general formalism for

analyzing the Killing spinor equations is that of G-structures. For IIB supergravity, this

works extremely well when the internal manifold has SU(3) structure [10, 11] but for back-

grounds with only SU(2) structure (which is the structure appearing in the current work)

that methodology is too cumbersome at present [12]. A more pragmatic approach devel-

oped by two of the current authors and their collaborators [13 – 15], is to use the physics

of the problem to make an Ansatz for the Killing spinors as well as the metric and form

fields. We will follow the latter approach and find that the symmetries of the problem suf-

ficiently restrict the form of the Ansatz such that the full solution can be obtained. More

specifically, the“supersymmetry bundle” is a four-dimensional subspace of the of the 32 real

components of the spinors, and we can use the symmetries and a specific combination of

the gravitino variation equations to define an eight-dimensional subspace that contains the

Killing spinors. We then parametrize the supersymmetries within this eight-dimensional

subspace in a manner that is equivalent to the dielectric deformation of the canonical D3-

brane projector [13 – 15]. Having found the supersymmetries, one can then build the rest

of the solution from the Killing spinor equation.

The solution of IIB supergravity on AdS5×T 1,1 is a Freund-Rubin Ansatz with constant

dilaton-axion and vanishing three-form flux. One can re-cast this solution in terms of D3

branes on the conifold, and the metric transverse to the branes is thus Kähler and Ricci

flat. It therefore possesses a rather trivial SU(3) structure. The PW solution is a warped

Freund-Rubin Ansatz with constant dilaton-axion and non-vanishing three-form flux. The

PW metric is neither Ricci flat nor Kähler but it is equipped with an integrable complex

structure, namely that of A1 × C [16]. It has two globally-defined spinors and as such

has only SU(2) structure. We find that the interpolating solution also has only an SU(2)

structure. The surprise is that even though the two end points of our interpolation have

a trivial dilaton-axion, the interpolating solutions themselves have a non-trivial dilaton-

axion. It also seems that the interpolating family lacks a integrable complex structure.

It is worth mentioning the interesting recent work [17] in which the authors use the

eight-dimensional duality group to generate new solutions that can be easily lifted to ten
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dimensions. For the supergravity duals to SCFT’s they are able to identify the exactly

marginal operator in the field theory, thus providing a holographic check of the methods of

Leigh and Strassler. Our scenario falls out of the scope of the powerful methods employed

there since it lacks the required two U(1) non-R symmetries.

This paper is organized as follows: In section 2, we review the relevant field theory, and

in particular discuss the symmetries. The symmetries of the supergravity background are

discussed in section 3. In section 4, we reduce the problem to five dimensions, enforcing

the AdS5 factor in the ten-dimensional background. Section 5 contains a review of the

KW and PW solutions. Sections 6 and 7 contain the main calculations: We derive the

BPS equations from the most general Ansatz which preserves the relevant symmetries

and reduce this system to three first order, non-linear ordinary differential equations. In

section 7 we establish that there is indeed a one parameter family of regular solutions to

these BPS equations and solve them numerically. We indeed show that they interpolate

between the KW and PW solutions. Those who are interested in the main result should

therefore jump to sections 6 and 7. Section 8 contains a discussion of the central charge of

each gauge theory in the family from the perspective of the dual supergravity theory. We

show analytically that the central charge has the correct constant value across the entire

family of solutions. Finally, there are several appendices containing spinor conventions and

computational details.

2. Field theory considerations

The conformal field theory we are considering in this paper is a non-trivial IR fixed point

of a mass deformed N = 2 quiver gauge theory [18]. The UV field theory has an SU(N)×
SU(N) gauge group two bi-fundamental hypermultiplets, one in the (N, N̄ ) and one in the

(N̄ ,N). In N = 1 language the first hypermultiplet decomposes into two chiral multiplets

(A1, B1) and the second hypermultiplet decomposes into two chiral multiplets (A2, B2).

The superpotential of this theory is

W = Tr (φ1(A1B1 − B2A2)) + Tr (φ2(A2B2 − B1A1)) . (2.1)

This theory has an SU(2) × SU(2)R × U(1)R continous global symmetry. The two hyper-

multiplets form a doublet under the SU(2) flavor symmetry.

This theory can be deformed by mass terms for the adjoint scalars [9, 3, 19]

∆W =
m1

2
Tr

(
φ2

1

)
+

m2

2
Tr

(
φ2

2

)
. (2.2)

This deformation breaks the continuous global symmetry to SU(2) × U(1)R. The U(1)R
symmetry is actually a combination of the U(1)R symmetry and a U(1) subgroup of the

SU(2)R symmetry of the N = 2 theory. The R-charges of the fields are

φi Ai Bi

1 1
2

1
2

(2.3)
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This field theory also has a Z4 discrete symmetry, with a generator ω which acts as a charge

conjugation

φi 7→ φt
i (2.4)

Ai 7→ iAt
i+1 (2.5)

Bi 7→ iBt
i+1 (2.6)

It is easy to see that the Z4 symmetry commutes with the continous symmetries and so the

global symmetry of the theory is SU(2)×Z4×U(1)R. However, ω2 and the center of SU(2)

simply negate Ai and Bi, and in the supergravity dual we will consider only gauge-invariant

bilinears of the fields A,B. Thus these generators will act trivially in supergravity which

means that the symmetry of the supergravity theory1 will be SO(3) × Z2 × U(1)R.

Below the mass scale given by m1 and m2 one can integrate out the adjoint scalars φ1

and φ2 and the low energy superpotential is given by

W = λ1 Tr
(
(A1B1 − B2A2)

2
)

+ λ2 Tr
(
(A2B2 − B1A1)

2
)
. (2.7)

The low energy effective action has the two gauge couplings τi and the two quartic super-

potential couplings λi.

The deformed theory is believed to flow to a non-trivial IR fixed point. Vanishing of

the β-functions for all the couplings requires

γAi
(τ1, τ2, λ1, λ2) + γBi

(τ1, τ2, λ1, λ2) +
1

2
= 0. (2.8)

This is two equations for four unknowns. However, the SU(2)×Z4 symmetry implies that

the functional form of all the anomalous dimensions is the same

γ = γAi
= γAi+1 = γBi

= γBi+1 . (2.9)

From this we conclude that the vanishing of the β-function implies only one constraint

γ +
1

4
= 0 (2.10)

for four unknowns. We expect the moduli space of IR theories to have three complex

dimensions.

The central charges for such theories have been calculated in [20, 21, 7]. The ratio of

the central charges of the IR theory and the UV theory is

c(IR)

c(UV )
=

27

32
. (2.11)

1Indeed, even within the SU(N) gauge theory, for N even, negating Ai and Bi is in the center of the

SU(N) gauge groups and so the symmetry of (perturbative) physical states of the field theory will also be

SO(3) × Z2 × U(1)R.
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3. Realizing the global symmetries within supergravity

In the following we want to construct supergravity backgrounds that are holographic duals

to field theories with a given global symmetry algebra. The global symmetries have to

be realized as symmetries of the background and this leads to powerful constraints on the

background. One set of constraints comes from the existence of the symmetry genera-

tors. The other set of constraints comes from the commutation relations of the symmetry

generators.

Type IIB supergravity has six different gauge symmetries. General coordinate trans-

formations which we restrict to the isometries generated by Killing vectors, δ(ξ); local

Lorentz transformations, δ(l); the U(1) R-symmetry, δ(Σ); the gauge transformations of

the two-form and four-form potentials, δ(Λ(1)) and δ(Λ(3)), and the supersymmetry trans-

formation δ(ε). There is also a global SU(1, 1) symmetry, which in string theory is broken

to SL(2, Z).

A background has a global symmetry generated by some specific symmetry generators,

(ξ, l,Σ,Λ(1),Λ(3), ε), provided that this transformation leaves the background invariant2.

Global supersymmetries have to be generated just by an ε and global bosonic symmetries

will be generated by a combination (ξ, l,Σ,Λ(1),Λ(3)).

3.1 Continous bosonic symmetries

The non-trivial, physical bosonic symmetries of the background must involve a transfor-

mation by an isometry, or a Killing vector3, ξ. The vielbein only transforms under both

general coordinate and local Lorentz transformations and its invariance typically requires

a compensating local Lorentz transformation that depends on the choice of the vielbein.

For this reason it is often useful, wherever possible, to choose a vielbein made of invariant

one-forms.

The coset fields V α
± , which describe the dilaton and axion, transform under the global

SU(1, 1) symmetry and locally under general coordinate transformations and the U(1)

R-symmetry of the IIB theory. The invariance of the coset fields requires

(∂ξ ± iΣ)V α
± = 0. (3.1)

From this it is easy to derive that the gradient of the dilaton-axion field in the ξ direction

is vanishing

Pξ = 0 (3.2)

and that Σ is the ξ component Qξ of the U(1) connection. Equation (3.1) also implies,

that at least one of the V α
± is a non-vanishing section of the associated line bundle over an

orbit of ξ. This implies, that one can choose a trivialization of the U(1) bundle over an

orbit of ξ and thereby render the connection, Qξ, trivial:

Qξ = 0. (3.3)

2There are also the SL(2, Z) actions, but those are discrete symmetries.
3One can see this from the fact, that a transformation generated by (ξ = 0, l, Σ, Λ(1), Λ(3)) will not leave

any field configuration invariant.
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With this choice of trivialization the action of the symmetry on the field strengths G(3)

and F (5) is just the Lie derivative. For this reason G(3) and F (5) have to be invariant forms

£ξG
(3) = 0 and £ξF

(5) = 0. (3.4)

We will not discuss the gauge transformations δ(Λ(1),Λ(3)) here because the supersym-

metry variations, the Bianchi identities and the equations of motion depend only on the

field strengths G(3) and F (5).

From the above discussion it follows, that the Killing vectors have to satisfy the bosonic

Lie algebra of the global symmetry group of the background

[δ(u1), δ(u2)] = δ([u1, u2]). (3.5)

This implies that the background is a fibration of a product of coset spaces and group

manifolds over a possibly non-trivial base.

3.2 Supersymmetries

The supersymmetries are generated by Killing spinors ε. In a purely bosonic background

the requirement of the existence of a global supersymmetry is the vanishing of the dilatino

and the gravitino variation.

Before looking at the dilatino and gravitino variation it is useful to look at the com-

mutators of the supersymmetry generators with other symmetry generators.

[δ(g), δ(ε)] = [δ(ξ), δ(ε)] + [δ(l), δ(ε)] + [δ(Σ), δ(ε)] = δ
((

∂ξ +
1

4
lrsγ

rs − i

2
Qξ

)
ε
)
, (3.6)

where l is a “Lie connection.” If the vielbein is given in terms of invariant forms and

the U(1) connection is chosen trivially, then the above expression reduces to the ordinary

derivative. For later convenience we define the Lie derivative of ε by this derivative operator:

£ξε =
(
∂ξ +

1

4
lrsγ

rs − i

2
Qξ

)
ε. (3.7)

This gives rise to the differential equation

£ξε = g · ε (3.8)

This allows to determine the dependence of ε on the directions given by the symmetries.

There are also powerful constraints coming from the anti-commutator of two super-

symmetries

{δ(ε1), δ(ε2)} = δ({ε1, ε2}). (3.9)

This implies, that

ξµ = 2Im(ε̄1γ
µε2) (3.10)

is the Killing vector associated to {ε1, ε2} and that

lrs = ωξ
rs − 1

3
F rsmnpRe(ε̄1γmnpε2) +

3

4
Im

(
Grsmε̄1γmε∗2 +

1

18
Gmnpε̄1γ

rsmnpε∗2

)
(3.11)

is the local Lorentz transformation associated to {ε1, ε2}. The relation including Σ is

trivially satisfied.
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3.3 Discrete symmetries

Discrete symmetries can be composed out of global diffeomorphisms, local Lorentz transfor-

mations, gauge transformations for the form fields, U(1)R symmetry transformations and

SL(2, Z) transformations. The commutation relations with the other global symmetries

are again given by the field theory.

The constraints from discrete symmetries are especially powerful when the global dif-

feomorphism leaves the orbits of the continous symmetries invariant. If this is the case, the

discrete symmetry implies powerful projection conditions on the fields and supersymmetry

generators. We will see an explicit example of this below.

4. Reduction to a five-dimensional problem

4.1 Decomposing the metric and spinors

The bosonic part of the four-dimensional, N = 1 superconformal algebra is SO(2, 4)×U(1).

This bosonic symmetry is realized by Killing vectors in the ten-dimensional geometry.

The geometry is then AdS5, which is covering space of SO(2, 4)/SO(1, 4), warped over

an internal five-manifold. The internal five-manifold itself is a S1 fibration over a four-

manifold, X4. The S1 must be a Killing direction dual to the R-symmetry action.

We adopt the following index conventions: Capital Latin letters denote ten-dimensional

indices (0, · · · , 9), small Greek letters denote the five-dimesional indices in the AdS5

(0, · · · , 4) and small Latin letters denote the internal indices (5, · · · , 9). A hat denotes

ten-dimensional frame indices, a tilde denotes five-dimensional frame indices in AdS5 and

a check denotes five-dimensional frame indices in the internal space. The warped AdS5

leads to a vielbein Ansatz of the form:

eµ̂ = Ω eµ̃
(e) for µ = 0, . . . , 4 (4.1)

em̂ =
1

Ω
em̌
(i) for m = 5, . . . , 9 (4.2)

where eµ̃
(e) is a vielbein for AdS5 of unit curvature radius and em̌

(i) is a vielbein for the

internal manifold.

The spinors of IIB supergravity must similarly decompose into spinors on AdS5 and on

the internal five-manifold. We will analyze this in detail, and we need to recall some basic

facts about spinors in various dimensions. More information may be found in appendix A.

Recall that in the IIB theory one can impose a Majorana-Weyl condition on a spinor

to reduce it to 16 real components. It is most convenient to represent the 32 components of

the N = 2 supersymmetry of the IIB theory in terms of a complex Weyl spinor. Our task

will be to decompose this into components along the two five-manifolds. To do this it will

be important to recall how complex conjugation acts on spinors. Given a set of γ-matrices,

complex conjugation maps them into an equivalent set, and so there is a matrix, B, that

will generically conjugate the γ∗
A back to the γA. By the same token, to map a spinor, Ψ,

to its complex conjugate representation one must accompany the conjugation by the action

– 8 –
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of B. Thus, the conjugate spinor, Ψ¯, is defined by:

Ψ¯ ≡ B−1Ψ∗ . (4.3)

The form and properties of B depend upon the dimension and signature of the metric and

upon γ-matrix conventions. In the IIB theory one can adopt conventions in which B is the

identity matrix (as in [22])), but we will keep our expressions convention independent and

adopt the notation (4.3). In five Lorentzian dimensions, B is necessarily non-trivial and

may be thought of as a symplectic form. Indeed, this fact lies at the heart of the symplectic

Majorana condition of five-dimensional supersymmetric theories.

In the following we will use the the notation (4.3) to denote the conjugate spinor in

all dimensions and metric signatures.

4.1.1 Killing spinors on AdS5

The ten-dimensional Killing spinor is a complex, chiral spinor (γ(10)ε = ε). Since it has to

respect the symmetries of AdS5, it has to be built out of five-dimensional Killing spinors.

The five-dimensional Killing spinor equation is:

(Dµ ± i

2
γµ) ζ = 0 , (4.4)

for either choice of sign. The distinct signs determine the transformation properties under

the conformal group, SO(2, 4). That is, solutions with a plus (respectively, minus) sign

transform in the 4 (respectively, 4̄) of SO(2, 4). If ζ is any SO(1, 4) four-spinor satisfy-

ing (4.4) for one choice of sign, it is easy to see that ζ¯ is a solution to (4.4) with the

opposite sign.

One can also check that 2Re(ζ̄1γ
µζ2) are Killing vector fields generating the AdS5 group

and that Re(ζ̄1ζ2) generates the U(1)R symmetry in accordance with the four-dimensional,

N = 1 superconformal algebra. This is because the superconformal algebra implies that the

bosonic symmetry generators appear in the 4⊗ 4̄ = 1⊕15. On the other hand, expressions

like Re(ζ̄1ζ
¯
2 ) and Re(ζ̃1γ

µζ2) are not related Killing vectors or other bosonic symmetry

generators.

4.1.2 The ten-dimensional Killing spinors

The ten-dimensional Killing spinors can be decomposed as

εζ = Ω
1
2

(
ζ ⊗ χ(1) + (ζ¯) ⊗ (χ(2)¯)

0

)
, (4.5)

where ζ is a Killing spinor in AdS5 which does not depend on the internal coordinates and

χ(i) are independent internal five-dimensional spinors which only depend on the internal

coordinates.

We can now compute the Killing vectors Re(ε̄1γ
M ε2)

Re(ε̄1γ
µε2) = Ω Re(ζ̄1γ

µζ2) (χ̄(1)χ(1) + χ̄(2)χ(2)), (4.6)

Re(ε̄1γ
mε2) = Ω Re(ζ̄1ζ2) (χ̄(1)γmχ(1) + χ̄(2)γmχ(2)). (4.7)
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It is interesting to note that cross terms like χ̃(1)χ(2) cancel out in this expression. The

foregoing equations also give rise to normalization conditions for the χ(i). The condition

coming from the normalization of the Killing vectors parallel to the AdS5 is:

χ̄(1)χ(1) + χ̄(2)χ(2) = 1. (4.8)

Similarly, the Killing vector of the form (4.7) along the internal manifold must be that

of the U(1)R symmetry, and so we must have:

3

2

∂

∂φ
= Ω (χ̄(1)γmχ(1) + χ̄(2)γmχ(2)) em̂, (4.9)

where φ is an internal coordinate.

Finally, we can determine the φ dependence of the internal spinors χ(i). Since the φ

direction realizes the U(1)R symmetry, we have to impose

£ ∂
∂φ

εζ = εiζ , (4.10)

which is equivalent to the five-dimensional spinor ζ having charge 1 under the U(1)R
symmetry. This leads to

£ ∂
∂φ

χ(i) = iχ(i). (4.11)

4.2 The dilatino variation

The dilatino variation is given by [22]

δλ = iP
M̂

γM ε¯ − i

24
G

M̂N̂P̂
γMNP ε. (4.12)

Poincaré invariance requires that P and G only have components in the internal directions.

This leads to the equation:

0 = Pm̂γmε¯ − 1

24
Gm̂n̂p̂γ

mnpε. (4.13)

Inserting the form of the Killing spinor (4.5) and realizing that ζ and ζ¯ may be considered

as independent variables, we get the two five-dimensional equations:

δλ(1) = Pm̌γm
(i)χ

(2) +
Ω2

24
Gm̌ňp̌γ

mnp
(i) χ(1) = 0, (4.14)

δλ(2) = Pm̌γm
(i)χ

(1)¯ +
Ω2

24
Gm̌ňp̌γ

mnp
(i) χ(2)¯ = 0. (4.15)

Since the background fields are independent of the U(1)R direction, these equations reduce

to spinor equations on the four-dimensional base, X4, of the S1 fibration that makes up

the internal manifold. It is also easy to show that the component of Pm̌ along the U(1)R
Killing vector must vanish. This result is expected from the U(1)R invariance, but can be

deduced explicitly from (4.14) and (4.15) as follows: Multiply the first equation by χ̄(2),

transpose the second equation and multiply it by χ(1) and add the two.
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4.3 The gravitino variation

The gravitino variation is [22]:

δψ
M̂

= D
M̂

ε +
i

480
F

P̂ Q̂R̂ŜT̂
γPQRST γM ε +

1

96
G

P̂ Q̂R̂

(
γM

PQR − 9δP
MγQR

)
ε¯, (4.16)

where the covariant derivative is given by

D
M̂

ε = ∂
M̂

ε +
1

4
ω

M̂P̂ Q̂
γPQε − i

2
Q

M̂
ε. (4.17)

In order to continue, we need to determine the ten-dimensional spin connection in

terms of the warp factor Ω and the five-dimensional spin connection:

ωµ̂ν̂ρ̂ = Ω−1ω(e)µ̃ν̃ρ̃, (4.18)

ωµ̂ν̂r̂ = ∂řΩηµ̂ν̂ , (4.19)

ωµ̂n̂r̂ = 0, (4.20)

ωm̂ν̂ρ̂ = 0, (4.21)

ωm̂ν̂r̂ = 0, (4.22)

ωm̂n̂r̂ = −Ωω(i)m̌ňř − ∂ňΩδm̌ř + ∂řΩδm̌ň, (4.23)

where ω(e) is the spin connection on AdS5 and ω(i) is the spin connection on the internal

manifold. Also note that

Qµ̂ = 0. (4.24)

The self dual five-form flux can be written as

F (5) = f e0̂···4̂ + f e5̂···9̂, (4.25)

where f only depends on the internal coordinates. The Bianchi identity for F (5) reduces,

for such a compactification, to

dF (5) = 0, (4.26)

which implies

f =
f0

Ω5
, (4.27)

where f0 is an integration constant.

Now we can determine the gravitino variations with M = 0, . . . , 4 a similar argument

as for the dilatino variation leads to

δψ
(1)
0 = − i

2Ω2
χ(1) +

1

2
∂ř log Ωγr

(i)χ
(1) +

if0

2Ω6
χ(1) − Ω2

96
Gp̌q̌řγ

pqr
(i) χ(2) = 0, (4.28)

δψ
(2)
0 =

i

2Ω2
χ(2)¯ +

1

2
∂ř log Ωγr

(i)χ
(2)¯ +

if0

2Ω6
χ(2)¯ − Ω2

96
Gp̌q̌řγ

pqr
(i) χ(1)¯ = 0. (4.29)

Similarly, the gravitino variations with M = 5, . . . , 10 lead to

δψ
(1)
m̌ = Dm̌χ(1) +

1

2
∂m̌ log Ωχ(1) − 1

2
∂ř log Ωγ(i)m

rχ(1)−
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− if0

2Ω6
γ(i)mχ(1) − Ω2

96
Gp̌q̌řγ(i)m

pqrχ(2) +
3Ω2

32
Gm̌q̌řγ(i)

qrχ(2) = 0 (4.30)

δψ
(2)
m̌ = Dm̌χ(2)¯ +

1

2
∂m̌ log Ωχ(2)¯ − 1

2
∂ř log Ωγ(i)m

rχ(2)¯−

− if0

2Ω6
γ(i)mχ(2)¯ − Ω2

96
Gp̌q̌řγ(i)m

pqrχ(1)¯ +
3Ω2

32
Gm̌q̌řγ(i)

qrχ(1)¯ = 0 (4.31)

5. Known solutions

5.1 The T 1,1 solution

The T 1,1 space is the intersection of the conifold z2
1 + z2

2 + z2
3 + z2

4 = 0 with the unit sphere.

This can be obtained by applying SO(3) × U(1) transformations on vectors of the form

(z
(0)
1 , . . . , z

(0)
4 ) = (1, i cos θ, 0, i sin θ). (5.1)

We can use the SO(3)×U(1) rotations to ensure that cos θ, sin θ ≥ 0, and so the manifold

is covered if one takes 0 ≤ θ ≤ π
2 . Applying infinitesimal transformations





1 + i dφ −σ3 σ2 0

σ3 1 + i dφ −σ1 0

−σ2 σ1 1 + i dφ 0

0 0 1 + i dφ




(5.2)

leads to

d~z =





dz1

dz2

dz3

dz4




=





i dφ − i cos θ σ3

σ3 − cos θ dφ − i sin θ dθ

−σ2 + i cos θ σ1

− sin θ dφ + i cos θ dθ




. (5.3)

The metric then takes the form [23]

ds2 = |d~z|2 − 1

6
|~z ∗ · d~z|2. (5.4)

The corresponding vielbein is4

e1 =

√
f0

3
cos θ σ1, (5.5)

e2 =

√
f0

3
σ2, (5.6)

e3 =

√
f0

3

√
3 + cos2 θ

(
σ3 − 4 cos θ

3 + cos2 θ
dφ

)
, (5.7)

e4 =

√
f0

3
dθ, (5.8)

e5 = −
√

f0

3

2 sin θ√
3 + cos2 θ

dφ, (5.9)

4We inserted the − sign in e5 for later convenience.
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with a warp factor

Ω2 =
√

f0. (5.10)

All the other fields are of course vanishing.

5.2 The Pilch-Warner fixed point solution

The vielbein in the Pilch-Warner solution [4] is

e1 =

√
f0

3
cos θ σ1, (5.11)

e2 =

√
f0

3
cos θ σ2, (5.12)

e3 =

√
2f0

3
cos θ

√
3 − cos2 θ

2 − cos2 θ

(
σ3 − 2

3 − cos2 θ
dφ

)
, (5.13)

e4 =

√
2f0

3

√
2 − cos2 θ dθ, (5.14)

e5 = −2

√
f0

3
sin θ

√
2 − cos2 θ

3 − cos2 θ
dφ (5.15)

and the warp factor is

Ω2 =
√

f0

√
2 − cos2 θ. (5.16)

Again one has complete coverage of the S5 by the action of the SU(2) × U(1) if one takes

0 ≤ θ ≤ π
2 . The Z2 that reduces the manifold to S5/Z2 lives inside the SU(2) and so does

not change the range of θ.

This set of frames differs from the one in [4] by a shift σ3 7→ σ3 − 2dφ. This shift is

useful so as to make the assignment of the four-dimensional R-charge more transparent.

In this frame the three-form flux is invariant under the four-dimensional R-symmetry.

5.3 Realization of the Z2 symmetry

The theory of a single D3-brane probe is the reduction of the SU(N)×SU(N) gauge theory

to a gauge theory with a single diagonal U(1). One can see that the Z2 symmetry acts as

(z1, z2, z3, z4) 7→ (−z1,−z2,−z3, z4) (5.17)

on the geometry. This corresponds to a shift ϕ3 7→ ϕ3 + π in the third Euler angle. This

symmetry preserves the SO(3) orbits. Based upon the field theory analysis, we expect

the interpolating solutions to have the same property, i.e. the geometric action of the Z2

symmetry will be implemented in the same way.

The action of the diffeomorphism on the vielbein is

(e1, e2, e3, e4, e5) 7→ (−e1,−e2, e3, e4, e5). (5.18)

This can be undone by a local Lorentz rotation in the 1-2 plane by π. Since in the field

theory the Z2 symmetry is a charge conjugation, the type IIB realization has to contain

S2, which is world sheet orientation reversal. However, this acts on the SL(2, IR)/U(1)
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coset fields as V ±
α 7→ −V ±

α . This has to be undone by a type IIB R-symmetry rotation by

π.

The Pilch-Warner solution respects the same Z2 symmetry, which is consistent with

the Z2 action in the field theory dual. This further supports the expectation that this Z2

will indeed be a symmetry of the complete interpolating family.

6. The interpolating solutions

6.1 Restrictions of the symmetries on the Ansatz

The most general five-dimensional metric respecting the SU(2) × U(1)R symmetry is an

SU(2) ×U(1) fibration over an interval. Using coordinate reparametrization invariance in

the fiber directions, this can be brought into the form

e1 = A1 (σ1 + C1 dφ + C2 dθ), (6.1)

e2 = A2 (σ2 + D1 dφ + D2 dθ), (6.2)

e3 = A3 (σ3 + B1 dφ + B2 dθ), (6.3)

e4 = A4 dθ, (6.4)

e5 = A5 dφ, (6.5)

However, under the Z2 symmetry σ1 and σ2 are odd, whereas σ3, dθ and dφ are invariant.

This constrains the Ansatz to

e1 = A1 σ1, (6.6)

e2 = A2 σ2, (6.7)

e3 = A3 (σ3 + B1 dφ + B2 dθ), (6.8)

e4 = A4 dθ, (6.9)

e5 = A5 dφ. (6.10)

In appendix B we give the components of the spin connection for this metric.

The most general Ansatz for the three-form flux, G, that respects all the symmetries

is:
G = g1 (e134 − ie234) + g2 (e145 − ie245) + g3 (e135 − ie235)+

+g4 (e134 + ie234) + g5 (e145 + ie245) + g6 (e135 + ie235)
(6.11)

and the most general dilaton-axion background respecting all the symmetries is

P = p e4 and Q = 0. (6.12)

Note, that the U(1) connection Q has been gauged away.

The Z2 symmetry acts through the diffeomorphism, the local Lorentz rotation by π

and a ten-dimensional R-symmetry rotation by π on the Killing spinor. This imposes a

projector on the Killing spinor

iγ12χ(1) = χ(1) and iγ12χ(2)¯ = χ(2)¯. (6.13)

This projection restricts the spinors χ(1) and χ(2)¯ to live in the same two-dimensional

subspace of the four-dimensional spinor space.
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6.2 Solving the supersymmetry variations

6.2.1 The “Magical Combination”

The magical combination 2δψ
(η)
0 +γ1δψ

(η)
1 +γ2δψ

(η)
2 of the gravitino variation equations [15]

is independent of all the fluxes, and depends only upon the metric. This leads to the

projector equations:
(

(A1A2)
′

A4
γ4 − iA3γ

3

)
χ(1) =

2iA1A2

Ω2
χ(1), (6.14)

(
(A1A2)

′

A4
γ4 − iA3γ

3

)
χ(2)¯ = −2iA1A2

Ω2
χ(2)¯ (6.15)

In order for the foregoing projector equations to have non-trivial solutions, the metric

coefficients must satisfy the condition:

A2
3 =

(
(A1A2)

′

A4

)2

+

(
2A1A2

Ω2

)2

. (6.16)

This condition is equivalent to setting:

(A1A2)
′

A3A4
= cos α and

2A1A2

Ω2A3
= sin α, (6.17)

for some function, α(θ). The Killing spinors then take the form

χ(1) = β1 e
i
2
φ

(
sin

α

2
| + +〉 − cos

α

2
| + −〉

)
, (6.18)

χ(2)¯ = β∗
2 e−

i
2
φ

(
sin

α

2
| + +〉 + cos

α

2
| + −〉

)
, (6.19)

where the ±’s refer to the helicities of iγ12 and iγ34 on X4. For consistency of the projector

equation, the metric coefficients and the function α have to satisfy the differential equation

1

2
(Ω2A3 sinα)′ = A3A4 cos α. (6.20)

We will assume in the following that for the interpolating solutions both spinors χ(1)

and χ(2)¯ are non-vanishing and for this reason are linearly independent.

6.2.2 The normalization conditions

After exploiting the second projector equation, we use normalization conditions for the

Killing spinors coming from the symmetry algebra of the problem. The coefficients β1 and

β2 have to satisfy the normalization condition (4.8):

|β1|2 + |β2|2 = 1. (6.21)

The other nornalization conditions (4.9) lead to the equations

3A5

2Ω2
= − cos α and

3A3B1

2Ω2
= − sin α (|β1|2 − |β2|2). (6.22)

For a range of 0 ≤ α ≤ π
2 the vielbein coefficient A5 has to be negative5.

5Note that this is just a convention and α can also be chosen in the range π
2
≤ α ≤ π.

– 15 –



J
H
E
P
0
8
(
2
0
0
6
)
0
8
3

6.2.3 The dilatino variation

The vanishing of the dilatino variations implies

g4 =
p

Ω2

(
β2

β1
− β∗

1

β∗
2

)
, (6.23)

g5 =
p

Ω2 tan α

(
β2

β1
+

β∗
1

β∗
2

)
, (6.24)

ig6 =
p

Ω2 sinα

(
β2

β1
+

β∗
1

β∗
2

)
. (6.25)

Note that all three expressions have the same phase. This observation is important for the

reality conditions.

6.2.4 Reality conditions

The next big simplification of the problem comes from realizing that the fermion variation

equations imply strong reality constraints. This is due to the reality of all the coefficients

in the vielbein. The external gravitino variation equations imply

Im

(
β2

β1
g1

)
= Im

(
β2

β1
g2

)
= Re

(
β2

β1
g3

)
= 0, (6.26)

and the “anti-magical” combination γ1δψ
(η)
1 − γ2δψ

(η)
2 of gravitino variations implies

B2 = 0. (6.27)

The gravitino variation equation δψ
(1)
4 then turns into two differential equations for β1,

which take the form

as,1
β′

1

β1
+ as,2 + as,3

β2

β1
= 0 , s = 1, 2 , (6.28)

with real coefficients as,t. One can take a linear combination of those two equations such

that the term proportional to β2

β1
vanishes. This implies that the phases of β1 and β2 do

not depend on θ.

One can use the ten-dimensional U(1) R-symmetry to give the same phase to β1 and

β2. In addition one can multiply the spinors χ(η) by an arbitrary constant phase. This

allows one to take β1 and β2 to be real, and they can be written as:

β1 = cos
β

2
and β2 = sin

β

2
. (6.29)

With this form of β1, β2, the spinor Ansatz in (6.18) and (6.19) is equivalent to introducing

a dielectric projector as in [15].

It also follows that g1 and g2 are real, g3 is imaginary and from the anti-magical

combination it follows that p is real. This means that all the complex functions in the

problem become real functions.
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In order to proceed with the gravitino variation equations it is useful to define the

matrices

L = cot α γ4 − i csc α γ3,

M = 1
sin β sin α

γ1(1l + cos β sin α γ3 + i cos αγ34),

N =
(

cos β β′

2 sin β
+ cot α α′

2

)
1l + β′

2 sinβ sinα
γ3 + i cot α β′

2 sinβ
γ4 + iα′

2 sinα
γ34.

(6.30)

These matrices satisfy the identities:

iχ(1) = Lχ(1) and −iχ(2)¯ = Lχ(2)¯, (6.31)

χ(2) = Mχ(1) and χ(1)¯ = Mχ(2)¯, (6.32)

χ(1)′ = Nχ(1) and χ(2)¯′ = Nχ(2)¯. (6.33)

This enables one to rewrite the gravitino variation equations in the form:

Rχ(1) = 0 and Rχ(2)¯ = 0, (6.34)

for some matrix, R. This implies that R = 0 modulo iγ12 = 1l, and so one can read off the

gravitino variation equations as the coefficients of 1l, γ3, γ4, γ34.

6.2.5 The external gravitino variation

The external gravitino variation equations can be solved for Ω, g1, g2 and g3

f0

Ω4
= cos β, (6.35)

g1 =
4cot β Ω′

Ω3A4
=

β′

Ω2A4
, (6.36)

g2 = −4 sin β

Ω4
− 4 cot α Ω′

Ω3A4 sinβ
= −4 sin β

Ω4
− cot α β′

Ω2A4 cos β
, (6.37)

g3 = − 4iΩ′

sin β sin α Ω3A4
= − iβ′

cos β sinα Ω2A4
. (6.38)

We will use these expressions for the three-form flux and Ω4 to simplify the remaining

gravitino variation equations.

6.2.6 The “anti-magical combination”

The anti-magical combination γ1δψ
(η)
1 − γ2δψ

(η)
2 leads to the following equations

A1

A2A3
− A2

A1A3
=

4p cos α

sin2 β sin2 α
, (6.39)

A′
1

A1A4
− A′

2

A2A4
= 2p

(
1 − 2

sin2 β sin2 α

)
, (6.40)

A1B1

A2A5
− A2B1

A1A5
=

4p cos β

sin2 β sin α
. (6.41)

Using the normalization conditions, (6.22), one can see that the last equation is actually

redundant. Those are the only gravitino variations that contain p, but no g1, g2 or g3. All

the other gravitino variations do not contain p. A vanishing p would imply that A1 = A2,

which inevitably leads to the Pilch-Warner solution.
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6.2.7 The gravitino variations in the third direction

A1

A2A3
+

A2

A1A3
− A3

A1A2
= − 2

Ω2 sinα
− 2 cos α β′

A4 sin β cos β sin2 α
, (6.42)

A3B
′
1

2A4A5
=

2cos β

Ω2
+

cot α β′

A4 sin β
, (6.43)

A′
3

A3A4
= −cot α

Ω2
− (2 cos2 α + sin2 β sin2 α)β′

2A4 sin β cos β sin2 α
, (6.44)

6.2.8 The gravitino variations in the fourth direction

α′

A4
=

3

Ω2
+

cot αβ′

A4 sin β cos β
, (6.45)

A3B
′
1

2A4A5
=

2cos β

Ω2
+

cos αβ′

A4 sin β sin α
. (6.46)

6.2.9 The gravitino variations in the fifth direction

A1B1

A2A5
+

A2B1

A1A5
= − 2β′

A4 sinβ sin α
, (6.47)

A′
5

A5A4
=

2

A5 sin α
+

3cot α

Ω2
− (2 − sin2 β)β′

2A4 sin β cos β
, (6.48)

2 cos α

A5
= − 3

Ω2
, (6.49)

A3B
′
1

2A4A5
=

2cos β

Ω2
+

cot α β′

A4 sinβ
. (6.50)

The third equation is equivalent to one of the normalization conditions. This confirms that

the normalization conditions (6.22) are chosen with the correct normalization constant.

6.3 The BPS equations

One can eliminate most variables from the BPS equations and the normalization condi-

tions (6.22). This leaves three independent equations for α, β, A1
A2

and A4

Ω2 . For notational

simplicity we define

g =
A4

Ω2
and h =

A1

A2
. (6.51)

With these definitions, the BPS equations are:

(
log

(
g sin β sin3 α (h + h−1)

cos α β′

))′

= 2g cot α, (6.52)

(
log

h − h−1

cos β

)′

=
2β′

sin β cos β sin2 α
, (6.53)

(
log

cot β

cos α

)′

= 3g tan α. (6.54)

It is straightforward to verify that BPS equations imply the supersymmetries, the Bianchi

identities and the equations of motion. Once one has a solution to this system one can
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obtain every other field from g, h and β. In appendix C we have summarized all the

equations needed to achieve this.

One can write (6.52)–(6.54) as a strictly first-order system by solving (6.53) for β′ and

substituting the results into (6.52) to obtain:

(
log

(
g (h + h−1)

(3 g − 1)

sin2 α

cos β

))′

= 2g cot α . (6.55)

It is also convenient to use this to substitute for β′ on the right-hand side of (6.53) to arrive

at: (
log

h − h−1

sin2 α cos β

)′

= − 6 g

sin α cos α
. (6.56)

We may then take the BPS system to be (6.54)–(6.56), and from this we see that there is

now at least one obvious integral of motion that can be obtained by taking a simple linear

combination of (6.54)–(6.56) so as to get zero on the right-hand side. Indeed,

I0 ≡ − g3

(3 g − 1)3
(h − h−1) (h + h−1)3

sin4 α

sin2 β cos2 β
(6.57)

must be constant as a consequence of the BPS equations.

It is unclear whether this system of equations has a simple, closed form for its solution.

The results from gauged supergravity [3] suggest that there should be an explicit solution,

but it has so far eluded us. In the next section we will discuss the two known (KW and

PW) solutions and use numerical methods to show that the BPS equations lead to a family

that interpolates between these two solutions.

7. Solving the BPS equations

We will not be able to find the general solution to the BPS equations. However, we

establish the existence of a one parameter family of solutions in several different ways. For

this purpose it is useful to first understand the boundary conditions. This will allow us to

count the integration constants of the BPS equations. We will find the linear perturbation

around the T 1,1 and Pilch-Warner fixed point solutions. Furthermore we find the solutions

numerically.

7.1 Boundary conditions

The interpolating solutions are given by IRIP3 × S1 fibrations over an interval. Since the

family of solutions should involve trading flux for the Kähler modulus of the blow-up, the

generic member of the family should have the same topology as T 1,1. The size of the two

S2’s will change as the three-form flux is changed, but the topology will only degenerate to

the orbifold when one reaches the PW solution. This means that the generic member of the

family of solutions should have exactly the same boundary conditions on the interval as the

T 1,1 metric. That is, A1 should vanish at one end of the θ-interval and A5 should vanish

at the other end. This will then properly fix the topology of the IRIP3 ×S1 fibration. Note

that the PW solution also satisfies these boundary conditions, and furthermore A1, A2 and

– 19 –



J
H
E
P
0
8
(
2
0
0
6
)
0
8
3

A3 all vanish at θ = π
2 . The vanishing of these extra metric functions merely reflects the

collapsed two-cycle in the orbifold.

We also have not yet fixed the reparametrization invariance (θ → θ̃(θ)). We do this

by requiring that α, defined in (6.22), be the independent variable and we will adopt this

choice henceforth. As we will show below, one has α ∈ [0, π
2 ].

Consider the end of the interval where A5 vanishes and where, generically, the coeffi-

cients A1, . . . , A4 and Ω2 are finite. The coefficient B1 is also generically non-vanishing as

the Klebanov-Witten limit suggests. Then equation (6.22) implies that α → π
2 . Assuming

that g is generic, equation (6.54) implies that β → 0 and equation (6.56) implies that

h → 1. Assuming that

β ∼
(
α − π

2

)s

and h − h−1 ∼
(
α − π

2

)t

with s, t > 0 (7.1)

equation (6.54) implies s = 3g − 1 and equation (6.53) implies t = 2s. Equation (6.52) is

then trivially satisfied in this limit.

The solution is regular if there is no conical singularity and that the fluxes behave in

a regular way. The vanishing circle at this end of the interval is given by the vector field

∂φ − B1σ3. (7.2)

There is no deficit angle if the metric coefficients satisfy

lim
α→π

2

B1A4

A′
5

∈ Z. (7.3)

The two known solutions impliy that B1A4
A′

5
→ −1, and other values of this would correspond

to different families of solutions. One can readily check that

B1A4

A′
5

→ −s. (7.4)

and so we must have s = 1, t = 2 and g → 2
3 . Note that the vanishing circle is not an

isometry of the geometry. The fluxes can behave like scalars, vectors or two-forms in the

4-5 plane. Regularity of the fluxes requires

p → 0, g2 → g5 → 0, g1 − ig3 → 0 and g4 + ig6 → 0. (7.5)

It is easy to see that all of those regularity conditions follow from the behaviour of α, β, g

and h

α → π

2
, β ∼ c1

(
α − π

2

)
, g ∼ 2

3
and h ∼ 1 + c2

(
α − π

2

)2
. (7.6)

Since β = 0 at this end of the interval, the Killing spinors are of “Becker type” and

so supersymmetric D3-brane probes should feel no force and this locus should be a moduli

space for such probes.

At the other end of the interval A1 must vanish and the coefficients A2, . . . , A5 and

Ω2 are generically non-vanishing, and so one must have h → 0. Equation (6.17) implies
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that α → 0. Equation (6.54) implies β′ → 0. Assuming that β and g stay at generic finite

values, equation (6.54) implies

β′ ∼ α and h ∼ αs with s > 0. (7.7)

Equations (6.52) and (6.53) then imply s = 1 and g → 1
2 .

The vanishing cycle at this end of the interval is generated by σ1. Absence of a conical

singularity requires
A′

1

A4
→ ±1, (7.8)

The T 1,1 solution actually has
A′

1
A4

→ −1. The condition for the flux to be regular is

p → 0, g1 → g4 → 0 and A2(g2 − g5) → iA3(g3 + g6). (7.9)

It is easy to see that all of those regularity conditions follow from the behaviour of α, β′,

g and h.

α → 0, β′ ∼ c3 α, g ∼ 1

2
and h ∼ c4 α, (7.10)

where

c3 = − lim
α→0

sinβ cos β

2
. (7.11)

At this end of the interval β is generically non-zero and supersymmetric D3-brane

probes should have a non-trivial potential. However, if they puff up into D5-branes by the

dielectric effect, such branes might settle into a supersymmetric configuration in this part

of the geometry.

It is at this end of the interval that the IRP 3 degenerates into an S2 of finite size unless

c4 = h′ = ∞, which happens in the PW limit.

7.2 Integration constants

Using α as the independent variable, we see that (6.53)–(6.55) is a first order system for

three functions, g, h and β. There are thus, naively, three constants of integration, which

may be thought of as the initial values of these functions at one end of the interval. However,

we saw in the last subsection that regularity of the solution imposes some constraints on

these initial conditions: We derived the behaviour of β, g and h on both ends of the

interval in such a way that the the solution is regular, has the desired toplogy, and the

BPS equations are satisfied to leading order. On each side of the interval this left two

integation constants c1, c2 at α = π
2 and c3, c4 at α = 0. The complete solution space

of the set of BPS equations is thus three dimensional and regularity at each end of the

interval selects a two-dimensional subspace at each end. Two two-dimensional subspaces

in three dimensions generically intersect in a one-dimensional subspace, and so there will

be a (real) one-dimensional family of solutions that are regular at both ends of the interval.

One can refine this argument using the integral of motion, (6.57). As we will show

below, I0 is given by a simple combination of c1 and c2, and by a simple combination c3

and c4. Choosing a value of I0 reduces the general solution space to a two-dimensional
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space and the regular solutions starting at each end of the interval to two one-dimensional

subspaces. These subspaces generically intersect at a point, and so given a value of I0 one

should expect a single solution that is regular at both ends of the α-interval. Thus one

expects the family of solutions we seek to be swept out by varying I0. As we will show

below, the explicit numerical solutions precisely bear out this picture.

One should recall that we did, in fact, expect a complex one-dimensional family of

solutions. The reduction to a real one-dimensional space came about via some of the gauge

choices and rotations we made earlier. The real one-dimensional solution space can be

complexified by reintroducing a constant phase eiϕ to the three-form flux and a phase e2iϕ

to the dilaton P . The other two complex moduli of the solution are the integration constant

τ0 for the gradient equation for the dilaton-axion and the two-form flux through the S2 at

α = π.

7.3 The Klebanov-Witten limit

For the T 1,1 solution, one can use equation (6.17) to determine the angle α in terms of θ

and then eliminate θ. This leads to

β = 0, g =
2

3 + cos2 α
and h =

√
3 sin α√

3 + cos2 α
. (7.12)

This limit looks somewhat singular because β = 0. However, the ratio β′

sinβ
is not singular.

It can be calculated using equation (6.53)

β′

sin β
= −3 − cos2 α

3 + cos2 α
tan α . (7.13)

It is then easy to see that the equations (6.52) and (6.54) are satisfied. The integral of

motion, (6.57), diverges and corresponds to the singular limit, I0 = ∞.

In order to see that the Klebanov-Witten limit is a smooth limit, one can do some

linearized analysis. Because β is vanishing, one can expand the BPS equation in δ
(

β′

sin β

)
,

δg and δh. In these variables the linearized BPS equations turn into a second order system

together with a first order equation

δβ′ = −3 − cos2 α

3 + cos2 α
tan α δβ. (7.14)

The obvious solution to the second order system is the trivial one. The linearized

perturbation is then given by

δβ =
cos α

3 + cos2 α
δc. (7.15)

where δc is a (small) constant of integration. This solution satisfies all the boundary

conditions, especially δβ′(α = 0) = 0 and δβ
(
α = π

2

)
= 0.

It is easy to derive the perturbation of the fields from this. To linear order, the metric

and the warp factor remain unchanged and the dilaton-axion is still zero, however the

three-form flux is given by:

δg1 = −sinα (3 − cos2 α)

2f0 (3 + cos2 α)
δc, δg4 =

cos2 α sin α

f0 (3 + cos2 α)
δc, (7.16)
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δg2 = −cos α (5 + cos2 α)

2f0 (3 + cos2 α)
δc, δg5 = − cos3 α

f0 (3 + cos2 α)
δc, (7.17)

δg3 =
i(3 − cos2 α)

2f0 (3 + cos2 α)
δc, δg6 =

i cos2 α

f0 (3 + cos2 α)
δc. (7.18)

The non-vanishing δg4, δg5 and δg6 imply that at the quadratic order the dilaton-axion

becomes non-trivial. It is easy to check that this perturbarion satisfies all the boundary

conditions.

Since the T 1,1 solution has no three-form flux and has a trivial dilaton-axion back-

ground, it is invariant under the phase rotation eiϕ. For this reason the perturbation can

be complexified by complexifying δc.

7.4 The Pilch-Warner limit

At the Pilch-Warner fixed point one can show:

cos β =
3 − cos2 α

3 + cos2 α
, sin β =

2
√

3 cos α

3 + cos2 α
, g =

2

3 − cos2 α
and h = 1. (7.19)

Again, this limit looks somewhat singular, but equation (6.53) defines the derivative of the

logarithm of a vanishing quantity.

(
log

(
h − h−1

))′
= − 18 + 14 cos4 α

sinα cos α (3 − cos2 α)(3 + cos2 α)
(7.20)

It is easy to check that the other two BPS equations are satisfied. The integral of mo-

tion, (6.57), has the value, I0 = 0.

As for the Klebanov-Witten limit, one can do a linearized analysis around the Pilch-

Warner point. The BPS equations can be expanded in terms of δβ, δg and δ (log h)′. Again

this leads to a second order system together with a first order equation

δh′ = − 18 + 14 cos4 α

sinα cos α (3 − cos2 α)(3 + cos2 α)
δh. (7.21)

Again, the third order system can be solved by the trivial solution. The linearized pertur-

bation is then given by

δh =
cos2 α (3 − cos2 α)2

sin4 α (3 + cos2 α)
δc, (7.22)

where δc is a (small) integration constant. This perturbation vanishes at α = π
2 and diverges

at α = 0. The divergence is due to the fact that this perturbation generates a resolution

of the A1 singularity in the Pilch-Warner geometry. A very similar behavior occurs if one

perturbatively expands the resolution of the A1 singularity in the Eguchi-Hanson geometry.

This is discussed in appendix D.

The non-vanishing perturbations of the vielbein coefficients are given by

δA1 = A1
δh√

2
, (7.23)

δA2 = −A1
δh√

2
. (7.24)
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This solution has a similar behavior as the blowup of an A1 singularity, however, it is

geometrically not the same because there are non-zero fluxes and curvatures. The sign of

δA1 suggests that this perturbation makes A1 vanish at θ = π
2 whereas A2 and A3 stay

finite. Also, the perturbations δp, δg4, δg5 and δg6 are non-vanishing, which shows that

the interpolating solutions indeed have a non-trivial dilaton-axion.

Since the Pilch-Warner fixed point solution has a non-trivial three-form flux, it is not

invariant under the phase rotation eiϕ. For this reason the foregoing perturbation can be

complexified by

δgi = igiδϕ. (7.25)

7.5 The round S5/Z2

Another very simple solution to the BPS equations is given by:

β = 0, g = 1 and h = 1. (7.26)

It is easy to check that this is actually the round S5/Z2. The regularity of the metric at

α = π
2 implies that φ has a periodicity of 3π. For this reason volume integrals have an

extra factor of 3
2 . This is important for the central charge calculations in the next section.

7.6 Numerical solutions

We now set about obtaining numerical solutions to the system of equations (6.52)–(6.54),

and we will indeed see that this system of equations leads to a family of solutions that

interpolates between the Pilch-Warner and T 1,1 geometries. As in the previous section, we

fix the freedom to reparametrize the θ-coordinate, θ → θ̃(θ), by taking α ∈ [0, π
2 ] to be

the independent variable. The next step is to use (6.53)–(6.55) to obtain expressions for

g′, h′ and β′ in terms g, h and β. One can then employ a simple Euler method to get the

numerical solution once one has specified “initial velocities” for g, h and β. A priori there

are three constants of integration, but as we described earlier, regularity reduces this to a

one parameter family of solutions parametrized by the value of I0.

We find the solutions for the functions g, h and β by “shooting,” that is, we vary initial

data at α = 0 and adjust it so as to hit the proper values at α = π
2 . In particular, we make

use of the asymptotics given in (7.10) and (7.6). At α = 0 one has β′ = 0 and h = 0 and so

the equations in (6.52) appear to be somewhat singular, however a careful series expansion

about α = 0 leads to a regular expansion of all the undetermined functions, and one finds:

h = c4 α + O(α3) , g =
1

2
+

1

16
(4 c2

4 − 1)α2 + O(α4) , (7.27)

β = β0 − 1

4
sin β0 cos β0 α2 + O(α4) . (7.28)

Similarly, at α = π
2 one finds:

h = 1 + c2

(
α − π

2

)2
+ O

((
α − π

2

)4)
, (7.29)

g =
2

3
+

1

9
(3 c2

1 − 2)
(
α − π

2

)2
+ O

((
α − π

2

)4)
, (7.30)
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Figure 1: Plots of the function β(α) against α for of six different values of the initial data. The

curves merge into a dashed enveloping curve that shows β(α) for the Pilch-Warner solution. For

the Klebanov-Witten solution one has β ≡ 0.

β = c1

(
α − π

2

)
− 1

6
c1 (3 − c2

1)
(
α − π

2

)3
+ O

((
α − π

2

)5)
. (7.31)

There are thus two free parameters at either end of the interval: β0 and c4 at α = 0 and

c1 and c2 at α = π
2 . One can use the series expansions to check that the constant of the

motion, (6.57), is given by

I0 =
1

c4
4 sin2 β0 cos2 β0

= − 128

27

c2

c2
1

. (7.32)

It is simplest to shoot from α = 0 where the value of β0 is chosen so as to select the

particular member of the family of solutions and then the value of c4 is adjusted so that

one arrives at g = 2
3 as α → π

2 . We use the series expansion at α = 0 (evolved to fairly high

order) to start the numerical solution, and then simply use an Euler method to generate

the complete solution. By choosing c4 to arrive at g = 2
3 one finds that the asymptotic

behavior of all the three functions obeys the proper asymptotics at α = π
2 .

The functions g, h and β for the KW and PW solutions are given by (7.12) and (7.19).

In particular, observe that for α = 0 one has β0 = π
3 for the PW solution. We therefore

found the numerical solutions for several values of β0 in the range 0 ≤ β0 ≤ π
3 . The results

for β, g and h are plotted in figures 1, 2 and 3. We have also plotted the exact results

for the KW and PW solutions. The value of the integral of motion, (7.32), monotonically

increases across the family from 0 for the PW solution to infinity for the KW solution. It

is clear from these graphs that the solutions to the BPS equations do indeed interpolate

between the KW and PW solutions, and that there is a smooth family of solutions in which

the flux of the PW solution is traded for a blowing-up of the non-trivial two-cycle.

We have focussed on the set of regular solutions to the BPS equations. As we noted

earlier, there is a three-parameter family of solutions in general. Our numerical solutions
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Figure 2: Plots of the function g(α) against α for of six different values of the initial data. The

upper and lower dashed lines show the function, g(α), for the Pilch-Warner solution and for the

Klebanov-Witten solution respectively. The horizontal dashed line shows the “target value”, 2

3
, for

g(α) at α = π

2
.
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Figure 3: Plots of the function h(α) against α for of six different values of the initial data. The

lower dashed curve shows h(α) for the Klebanov-Witten solution, while h(α) ≡ 1 for the Pilch-

Warner solution.

show that the other solutions to the BPS equations can be characterized as solutions

starting from g = 1
2 at α = 0 and arriving at some arbitrary value of g at α = π

2 . The

absence of conical singularities required that (3g − 1) ∈ Z, and the Klebanov-Witten
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solution imposed (3g − 1) = 1. However, there might be other interesting solutions to our

BPS equations that are regular geometries but with different asymptotic values of g.

8. The central charge

As a final check on our results, we calculate the central charge of the family of solutions.

It turns out that this is actually an exact calculation even though the exact solutions are

not known. The central charge of the holographic dual gauge theory is proportional to the

effective five-dimensional Newton constant [24, 20].

8.1 Calculating the effective five-dimensional Newton constant

The effective five-dimensional Newton constant G5 is given by

G5 = G10

∫

X5

1

Ω2
e1 ∧ e2 ∧ e3 ∧ e4 ∧ e5 (8.1)

Using the vielbein Ansatz this can be reduced to

G5 = 2(2π)3G10

∫

I

A1A2A3A4A5

Ω2
dθ (8.2)

Using the equations (6.17), (6.22) one can show that

G5 = −2(2π)3G10

3

∫

I

(A2
1A

2
2)

′ dθ. (8.3)

For the family of N = 1 theories the boundary conditions imply that

G
(IR)
5 =

2(2π)3G10f
2
0

27
, (8.4)

whereas for the N = 2 theory

G
(UV )
5 =

3(2π)3G10f
2
0

48
. (8.5)

Note that the factor 3 in the enumerator is due to the different periodicity of φ as discussed

in section 7.5. These formulas depend on the integration constant, f0. This constant was

introduced as the coefficient of the five-form flux. For this reason it is related to the number

ND3 of D3-branes, which is the rank of the gauge group. However, (8.4) already shows that

the central charge of the dual field theory is constant across the entire family of solutions,

and independent of the choice of the initial data for the BPS equations. To conclude that

this implies that the central charge of the dual field theory is constant across the family one

really needs to show that the parameter, f0, represents the number of D3-branes present

in the family of solutions. While this seems highly plausible, we will now prove it.
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8.2 Calculating the rank of the gauge group

The Bianchi identity [22]

dF (5) =
i

8
G ∧ G∗ (8.6)

implies that the five-form flux is not only sourced by D3-branes, but also by three-form

flux. For this reason the total five-form flux cannot be used to determine the rank of the

gauge group. The effect of the three-form flux can be subtracted as follows

ND3 =

∫

X5

(
F (5) − i

16
εαβAα ∧ F β

)
. (8.7)

The five-form under the integral is not gauge invariant by itself, but the integral is gauge

invariant.

To determine this integral, we need to relate the quantities appearing here to metric

and field coefficients. The internal part of the field strength F (5) is given by

F
(5)
int =

f0A1A2A3A4A5

Ω10
σ1 ∧ σ2 ∧ σ3 ∧ dθ ∧ dφ (8.8)

The three-form flux F (3) = F 1 = (F 2)∗ is related to G by

G = −εαβV α
+ F β. (8.9)

Using the identity

|V 2
+|2 − |V 1

+|2 = 1, (8.10)

the foregoing relation can be inverted to yield

F (3) = V 2
+
∗G + V 1

+G∗. (8.11)

In our geometry G has the form

G = h1σ
1 ∧ σ3 ∧ dθ + h2σ

2 ∧ σ3 ∧ dθ + h3σ
1 ∧ σ3 ∧ dφ+

+ h4σ
2 ∧ σ3 ∧ dφ + h5σ

1 ∧ dθ ∧ dφ + h6σ
2 ∧ dθ ∧ dφ,

(8.12)

which implies, that F (3) has the form

F (3) = f1σ
1 ∧ σ3 ∧ dθ + f2σ

2 ∧ σ3 ∧ dθ + f3σ
1 ∧ σ3 ∧ dφ+

+ f4σ
2 ∧ σ3 ∧ dφ + f5σ

1 ∧ dθ ∧ dφ + f6σ
2 ∧ dθ ∧ dφ.

(8.13)

The field strength, F (3), satisfies the Bianchi identity dF (3) = 0, which implies

f5 = −f ′
4 and f6 = f ′

3. (8.14)

A two-form potential A(2) for such an F (3) is then

A(2) = −f1σ
2 ∧ dθ + f2σ

1 ∧ dθ − f3σ
2 ∧ dφ + f4σ

1 ∧ dφ. (8.15)
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This can be used to determine

εαβAαF β = 2(f1f
∗
3 − f∗

1f3 + f2f
∗
4 − f∗

2 f4)σ1 ∧ σ2 ∧ σ3 ∧ dθ ∧ dφ (8.16)

or

εαβAαF β = 2(h1h
∗
3 − h∗

1h3 + h2h
∗
4 − h∗

2h4)σ1 ∧ σ2 ∧ σ3 ∧ dθ ∧ dφ (8.17)

This can be reexpressed in terms of the vielbein coefficients

εαβAαF β =

= −4A2
3A4A5((g1 + g4)(g3 + g6)A

2
1 + (g1 − g4)(g3 − g6)A

2
2)σ1 ∧ σ2 ∧ σ3 ∧ dθ ∧ dφ

(8.18)

One can check that

− (A2
1A2

2 cos2 β)′

3f0
=

f0A1A2A3A4A5

Ω10 +
iA2

3A4A5((g1+g4)(g3+g6)A2
1+(g1−g4)(g3−g6)A2

2)
144 .

(8.19)

which implies that

ND3 = −2(2π)3

3f0

∫

I

(A2
1A

2
2 cos2 β)′ dθ. (8.20)

For the family of N = 1 theories this yields:

N
(IR)
D3 =

2(2π)3f0

27
(8.21)

and for the N = 2 theory this is

N
(UV )
D3 =

3(2π)3f0

48
. (8.22)

This enables us to express the effective five-dimensional Newton constant in terms of the

rank of the gauge group

G
(IR)
5 =

27G10N
(IR)
D3

2

2(2π)3
and G

(UV )
5 =

48G10N
(IR)
D3

2

3(2π)3
. (8.23)

The ratio of the effective five-dimensional Newton constants is exactly the ratio of the

central charges of the UV and the IR gauge theories

G
(IR)
5

G
(UV )
5

=
27

32
=

c(IR)

c(UV )
. (8.24)

Thus the family of solutions has precisely the correct central charge to be the duals of the

family of fixed points predicted in [3, 19].
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9. Conclusions

We have found the long-sought family of AdS5 vacuum solutions that interpolate between

the T 1,1 compactification and the flux compactification of Pilch and Warner [4]. This

family of solutions is holographically dual to the family of N = 1∗ IR fixed points that

can be obtained by flowing from an N = 2, Z2 quiver gauge theory. In the field theory,

this family is parametrized by the ratio, m1/m2, of masses given to the chiral multiplets

on each node of the quiver. In supergravity the difference of the masses, m1 − m2, is dual

to the Kähler modulus of a non-trivial S2, while the sum of the masses, m1 + m2, is dual

to a non-trivial, three-form field strength. Thus the family represents a kind of continuous

geometric transition in which a Kähler deformation is traded for flux.

One of the surprises, and perhaps one of the reasons why this solution was not discov-

ered earlier, is that the generic solution has a non-trivial dilaton. It is surprising because the

dilaton background is trivial for the two previously know (KW and PW) solutions. There

are obvious questions about whether there is any interesting physics to be learned from

the non-trivial dilaton profiles. On the more mathematical side, it raises questions about

the underlying geometric structure of these solutions. One of the important insights of [16]

was that the geometry of the PW solution, and indeed the flows to and around it [7, 25],

possessed an integrable complex structure, and indeed were “almost Calabi-Yau.” The

non-trivial dilaton profile, and indeed the fact that it is real, seems to be at odds with

the integrability of the complex structure. We have tried the obvious generalizations of

the integrable complex structure found in [16] and they fail to work here, and this failure

perhaps explains the incompatibility of the complex structures, noted in [25], of the PW

flow and of the Calabi-Yau metric that must underlie [16] the KW flow. There is thus an

interesting issue as to how to characterize the geometry of the interpolating family obtained

here.

The system of BPS equations that we obtained were surprisingly complicated, also

probably as a consequence of the non-trivial dilaton profile. This is all the more surprising

in the light of the results of [3] that led to the conjectured existence of the family of

solutions. It was shown in [3] that, from the perspective of five-dimensional, N = 4 gauged

supergravity, all the vacuum solutions in the family, and indeed all the flows to them, were

governed by exactly the same set of equations. The complete family, in five-dimensional

supergravity, is swept out by the action of an SU(2) symmetry. One would therefore,

naively, expect an equally simple formulation in ten-dimensions. However, as was pointed

out in [3], and as we see explicitly here, this sweeping out of the family involves some

extremely non-trivial trading of very different geometric quantities in ten dimensions. It is

certainly not the first time that a trivial symmetry in lower dimensions has led to subtle

or profound effects in higher dimensions, and indeed the parallels between the present

example and mirror symmetry are rather intriguing. It would certainly be very interesting

to find how the symmetry that sweeps out the family acts in ten dimensions. This might

be similar to the SL(2, IR) action in [17]. For this reason there should be a simpler form of

our BPS equations and a way to solve them analytically. However, in string theory such

a continous symmetry group of the supergravity will be broken down to a discrete duality
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group by solitonic excitations [26 – 28].

There is also the issue of the flow solutions: We have found the fixed points, but it

would be very useful to find the family of flows from the quiver gauge theories to these

fixed points. Finding these might also shed light upon the underlying geometric structure.

As a final comment, we found the family of solutions by a very careful analysis of the

symmetries of the field theory. In particular, the discrete Z2 symmetry in combination

with the SO(3) symmetry played a very significant role in fixing the metric Ansatz and

in determining one of the supersymmetry projectors. We suspect that such a careful

treatment of such discrete symmetries of will also give new insights into how to solve other

open problems in holographic descriptions of field theories, especially for field theories

related to N = 4 SYM.
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A. Some Clifford algebra

A.1 Generalities

The Clifford algebra is defined by the anticommutation relations

{γm, γn} = 2ηmn, (A.1)

where ηmn = ηmδmn. We choose a representation in which
√

ηmγm is Hermitean6. Given

a complex structure, one can define the raising and lowering operators

Γm =
√

η2m−1γ2m−1 + i
√

η2mγ2m, and (Γm)† =
√

η2m−1γ2m−1 − i
√

η2mγ2m. (A.2)

Then the raising and lowering operators satisfy the following anticommutation relations:

{Γm,Γn} = {(Γm)†, (Γn)†} = 0 and {Γm, (Γn)†} = 4δmn. (A.3)

One can then define the fermion number operators

Fm = i
√

η2m−1γ2m−1
√

η2mγ2m = 1 − 1

2
Γm(Γm)† = −1 +

1

2
(Γm)†Γm. (A.4)

6By the square root we mean
√

1 = 1 and
√
−1 = i.
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The chirality operator is then the product of all the Fermion number operators γ =

F 1 · · ·Fn.

The Fermion number operators have eigenvalues ±1. The eigenvalues of the Fermion

number operators can be used to label a basis of states. One can define a ground state

|0〉 which is anihilated by all the lowering operators. It has Fermion number −1 for all

Fermion number operators. All other states can be gotten by applying raising operators.

If one labels a state by |ν1, . . . , νn〉, then the raising and lowering operators act as follows:

|ν1, . . . ,+1, . . . , νn〉 =
1

2
ν1 · · · νm−1(Γ

m)†|ν1, . . . ,−1, . . . , νn〉, (A.5)

|ν1, . . . ,−1, . . . , νn〉 =
1

2
ν1 · · · νm−1Γ

m|ν1, . . . ,+1, . . . , νn〉. (A.6)

This defines the matrix elements of the gamma matrices. One can see that in this basis

Γm is real. From this follows that

• The matrices
√

ηmγm are Hermitean,

• The matrices
√

η2m−1γ2m−1 are symmetric and real and

• The matrices
√

η2mγ2m are antisymmetric and imaginary.

In general there are matrices B, C and D such that

(γm)∗ = ηBBγmB−1, (A.7)

(γm)† = CγmC−1, (A.8)

(γm)t = ηBDγmD−1, (A.9)

where ηB = ±1 is a constant which is chosen (if possible) such that BB∗ = 1. One can

see that D = (B†)−1C. Given a spinor ε, ε¯ = B−1ε∗, ε̄ = ε†C and ε̃ = εtD transform

covariantly.

If BB∗ = 1 one can impose the Majorana condition ε = B−1ε∗. And if B commutes

with the chirality operator γ, one can impose the Majorana-Weyl condition.

In the following we collect useful Gamma matrix identities in various dimensions.

A.2 Spin(1, 9)

Chirality operator:

γ = −γ0···9 (A.10)

Complex conjugation:

B = γ013579 (A.11)

BγMB−1 = −(γM )∗ (A.12)

Bγ(10)B
−1 = γ∗

(10) (A.13)

BB∗ = 1 (A.14)

Hermitean conjugation:

C = γ0 (A.15)
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CγMC−1 = (γM )† (A.16)

Transpose:

D = (B†)−1 C = −γ13579 (A.17)

DγMD−1 = −(γM )t (A.18)

A.3 Spin(1, 4)

Chirality operator:

γ4 = −γ0123 (A.19)

γ01234 = 1 (A.20)

Complex Conjugation:

B = γ013 (A.21)

BγµB−1 = (γµ)∗ (A.22)

BB∗ = −1 (A.23)

Hermitean conjugation:

C = γ0 (A.24)

CγµC−1 = (γµ)† (A.25)

Transpose:

D = (B†)−1 C = γ13 (A.26)

DγµD−1 = (γµ)t (A.27)

A.4 Spin(5)

Chirality operator:

γ5 = −γ1234 (A.28)

γ12345 = −1 (A.29)

Complex Conjugation:

B = γ24 (A.30)

BγmB−1 = (γm)∗ (A.31)

BB∗ = −1 (A.32)

Hermitean conjugation:

C = 1 (A.33)

CγmC−1 = (γm)† (A.34)

Transpose:

D = (B†)−1 C = γ24 (A.35)

DγmD−1 = (γm)t (A.36)

It is easy to check that

B−1| + +〉∗ = | − −〉, B−1| + −〉∗ = −| − +〉,
B−1| − +〉∗ = | + −〉, B−1| − −〉∗ = −| + +〉. (A.37)
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A.5 Decomposition of a ten-dimensional spinor

We want to decompose spinors in ten-dimensional Minkowski space of mostly minus sig-

nature into four-dimensional and six-dimensional spinors. The gamma matrices can be

decomposed as

γµ

(10)
=

(
0 γµ

(e) ⊗ 1(i)

γµ

(e) ⊗ 1(i) 0

)
and γm

(10) =

(
0 −1(e) ⊗ γm

(i)

1(e) ⊗ γm
(i) 0

)
. (A.38)

Note that the internal gamma matrices γm
(i) have a +-signaturte.

The ten-dimensional chirality operator is given by

γ(10) = −γ0···9
(10) =

(
1 0

0 −1

)

, (A.39)

the complex conjugation is given by

B(10) =

(
B(e) ⊗ B(i) 0

0 −B(e) ⊗ B(i)

)
(A.40)

and the hermitean conjugation is given by

C(10) =

(
0 C(e) ⊗ C(i)

C(e) ⊗ C(i) 0

)
. (A.41)

B. The spin connection of the internal metric

The derivatives of the vielbein are

de1 =
A′

1

A1A4
e4 ∧ e1 +

A1

A2A3
e2 ∧ e3 − A1B1

A2A5
e2 ∧ e5 − A1B2

A2A4
e2 ∧ e4, (B.1)

de2 =
A′

2

A2A4
e4 ∧ e2 − A2

A1A3
e1 ∧ e3 +

A2B1

A1A5
e1 ∧ e5 +

A2B2

A1A4
e1 ∧ e4, (B.2)

de3 =
A′

3

A3A4
e4 ∧ e3 +

A3

A1A2
e1 ∧ e2 +

A3B
′
1

A4A5
e4 ∧ e5, (B.3)

de4 = 0, (B.4)

de5 =
A′

5

A5A4
e4 ∧ e5. (B.5)

This leads to the following spin connection:

ω114 =
A′

1

A1A4
, (B.6)

ω123 = − A1

2A2A3
+

A2

2A1A3
+

A3

2A1A2
, (B.7)

ω124 =
A1B2

2A2A4
− A2B2

2A1A4
, (B.8)

ω125 =
A1B1

2A2A5
− A2B1

2A1A5
, (B.9)
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ω224 =
A′

2

A2A4
, (B.10)

ω213 = − A1

2A2A3
+

A2

2A1A3
− A3

2A1A2
, (B.11)

ω214 =
A1B2

2A2A4
− A2B2

2A1A4
, (B.12)

ω215 =
A1B1

2A2A5
− A2B1

2A1A5
, (B.13)

ω312 =
A1

2A2A3
+

A2

2A1A3
− A3

2A1A2
, (B.14)

ω334 =
A′

3

A3A4
, (B.15)

ω345 = − A3B
′
1

2A4A5
, (B.16)

ω412 = − A1B2

2A2A4
− A2B2

2A1A4
, (B.17)

ω435 = − A3B
′
1

2A4A5
, (B.18)

ω512 = − A1B1

2A2A5
− A2B1

2A1A5
, (B.19)

ω534 =
A3B

′
1

2A4A5
, (B.20)

ω554 =
A′

5

A5A4
. (B.21)

C. Recovering the fields

Going through all the independent BPS equations one can recover the vielbein coefficients

from α, β, g and h

Ω2 =

√
f0

cos β
, (C.1)

A1 =

√

−f0 sin3 α sin β g(h2 + 1)

4β′ cos α
, (C.2)

A2 =

√

−f0 sin3 α sin β g(h2 + 1)

4β′ cos α h2
, (C.3)

A3 = −
√

f0 cos β sin2 α sin β g(h2 + 1)

2β′ cos αh
, (C.4)

A4 = g

√
f0

cos β
, (C.5)

A5 = −2

3

√
f0

cos β
cos α, (C.6)
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B1 =
4β′ cos α h

3g sin α sin β (h2 + 1)
, (C.7)

p = − β′ sin β (h2 − 1)

2
√

f0 cos β g(h2 + 1)
, (C.8)

g1 =
cos β β′

f0g
, (C.9)

g2 = −4 sin β cos β

f0
− cot αβ′

f0g
, (C.10)

g3 = − iβ′

f0g sin α
, (C.11)

g4 =
cos β β′(h2 − 1)

f0g(h2 + 1)
, (C.12)

g5 = −β′ cot α (h2 − 1)

f0g(h2 + 1)
, (C.13)

g6 =
iβ′(h2 − 1)

f0g sin α (h2 + 1)
. (C.14)

D. The resolution of an A1 singularity

The Eguchi-Hansen metric can be written as

ds2 = 4r6(a + r4)−
5
2 (2a + r4)dr2 + (a + r4)−

1
2

(
r8

2a + r4
(σ1)2 + (2a + r4)((σ2)2 + (σ3)2)

)
,

(D.1)

with r ≥ 0. This is a global coordinate system which allows a smooth a → 0 limit. A

corresponding vielbein is

e1 = A1σ
1 = r4(a + r4)−

1
4 (2a + r4)−

1
2 σ1, (D.2)

e2 = A2σ
2 = (a + r4)−

1
4 (2a + r4)

1
2 σ2, (D.3)

e3 = A3σ
3 = (a + r4)−

1
4 (2a + r4)

1
2 σ3, (D.4)

e4 = A4σ
4 = 2r3(a + r4)−

5
4 (2a + r4)

1
2 dr. (D.5)

The linearized perturbation around a = 0 is given by

δA1 = − 5

4r3
δa, (D.6)

δA2 = δA3 =
3

4r3
δa, (D.7)

δA4 =
1

2r4
δa (D.8)

The size of the deformation can be determined using the natural metric

δgijδgklg
ikgjl =

√
A1A2A3A4

∑

i

(
2δAi

Ai

)2

=
√

2r−
13
2 δa2. (D.9)

This diverges as r → 0, which indicates that the range of validity of the linearized approx-

imation is smaller for small r.
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